Prof. Dr. Romana Piat
- [sci.] Professorin an der Hochschule Darmstadt
- Mathematik
Verbundwerkstoffe - Gruppe: [prev.] Heisenberg
- Raum: Deutschland, Darmstadt
- Forschung
h_da Hochschule Darmstadt
fbmn Fachbereich Mathematik und NaturwissenschaftenSchöfferstr. 3
D-64295 Darmstadt
Mikrostrukturmodellierung und –optimierung schmelzinfiltrierter Metall-Keramik-Verbundwerkstoffe
Nachwuchsgruppe von Dr. Romana Piat
Projektbeschreibung
Es soll eine numerische Zweiskalenmethode zur Mikrostrukturoptimierung von Mikroproben und Bauteilen aus schmelzinfiltriertem Metall-Keramik-Verbundwerkstoff mit maximaler makroskopischer Steifigkeit unter quasistatischer mechanischer Belastung entwickelt werden. Die makroskopische Modellierung erfolgt mittels der FE-Methode. Jeder Integrationspunkt im Element, das aus mehreren Domänen (aus Gebieten gleicher Orientierung und Geometrie der Einschlüsse) besteht, stellt die Mikrostruktur auf der Mikroebene dar. Die effektive Steifigkeit der Mikrostruktur auf der Mikroebene unter Wirkung der makroskopischen Verzerrungen wird mittels mikromechanischer Zwei-Schritt-Homogenisierungsverfahren bestimmt. Das inelastische Materialverhalten der einzelnen Materialphasen wird inkrementell durch entsprechende Materialgesetze bei der Bestimmung der Tangentesteifigkeit der einzelnen Domäne im ersten Homogenisierungsschritt berücksichtigt. Die effektive Steifigkeit im Integrationspunkt wird im zweiten Homogenisierungsschritt bestimmt. Die Beschränkungen auf Design-Variablen der Optimierung sollen aus den statistischen Untersuchungen der Mikrostruktur und aus Kenntnissen über den Herstellungsprozess definiert werden. Die Lösung des Optimierungsproblems soll iterativ zuerst für ein einfaches Problem und dann für eine kappenförmige Prothese erfolgen. Zur Bestimmung der Materialgesetze für einzelne Phasen sowie zur Verifikation der Mikrostrukturmodellierung und Optimierung werden zahlreiche vorhandene experimentelle Daten aus Untersuchungen der Mikro- und Makroproben sowie aus FE-Modellen der realen Mikrostruktur eingebracht.
Typische Mikrostruktur der schmelzinfiltrierten Metall-Keramik-Verbundwerkstoffe (Aufnahmen von S. Roy IWK1)
Berechnete optimale Domäne und Keramik Verteilungen für eine Probe unter 4-Punkt-Biegeversuch
a) Schematische Darstellung des 4-Punkt-Biegeversuchs und von einzelner Domäne mit Orientierung alpha
b) Optimierte Mikrostruktur mit minimaler Nachgiebigkeit: Domäne- und Keramikverteilung innerhalb der 2D Mikrostruktur
Mehr dazu in
R. Piat, Y. Sinchuk, M. Vasoya, O. Sigmund, Minimal compliance design for metal-ceramic composites based structures, eingereicht bei Acta Materialia.
Publikationen
Nachwuchsgruppe von Dr. Romana Piat
Begutachtete Journal Papers und Bücher (der letzten 5 Jahre):
2011:
Gross T., Nguyen K., Timoshchuk N., Tsukrov I., Reznik B., Piat R., Bohlke T.
Tension-compression anisotropy of in-plane elastic modulus for pyrolytic carbon
accepted in Carbon.
Piat R., Sinchuk Y., Vasoya M., Sigmund O.
Minimal compliance design for metal-ceramic composites based structures
submitted in Acta Materialia.
Drach B., Tsukrov I., Gross T., Dietrich S., Weidenmann K., Piat R., Böhlke T.
Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes
submitted in J. of Solids and Structures.
2010
Stasiuk, G., Ziegler, T., Piat, R., Neubrand, A.:
Numerical estimation of the thermal expansion of lamellar single domains in metal/ceramic composites.
PAMM • Proc. Appl. Math. Mech. 10, 723-724 (2010) / DOI
10.1002/pamm.201010346
Piat, R., Böhlke, T., Deutschmann, O., Dietrich, S., Drach, B., Gebert, J.-M. , Gross, T. , Li, A., Reznik, B. , Stasiuk, G., Tsukrov, I., Wanner, A.:
Numerical Studies of the Influence of the Porosity on Macroscopic Elastic Properties of Carbon/Carbon Composites.
PAMM • Proc. Appl. Math. Mech. 10, 719-720 (2010) / DOI
10.1002/pamm.201010344
Piat, R., Sinchuk, Y., Vasoya, M.: Application of the semy-analytical micromechanical methods for optimization of the elastic response of metal-ceramic composites.
PAMM • Proc. Appl. Math. Mech. 10, 721-722 (2010) / DOI
10.1002/pamm.201010345
Böhlke,T., Lin, S., Piat, R., Heizmann, M., Tsukrov, I.:
Estimate of the Thermoelastic Properties of Pyrolytic Carbon based on an Image Segmentation Technique.
PAMM • Proc. Appl. Math. Mech. 10, 281-282 (2010) / DOI
10.1002/pamm.201010133
Li, A., Deutschmann, O., Piat, R., Böhlke, T., Tsukrov, I., Gross, T.:
Phase-field modeling of the effect of interfacial energy on pyrolytic carbon morphology in chemical vapor deposition.
PAMM • Proc. Appl. Math. Mech. 10, 715-716 (2010) / DOI
10.1002/pamm.201010342
Sinchuk Y., Piat R., Vasoya M.
Elastic Properties of Metal-Ceramic Composites: Micromechanical Estimation and Microstructure
In Ed: Krenkel W., Lamon J.: High Temperature Ceramic Materials and Composites AVISO Verlagsgesellschaft mbH, Berlin,Germany, 228-233.
Piat R., Dietrich S., Gebert J.-M., Stasiuk G., Weidenmann K., Wanner A., Böhlke T., Drach B., Tsukrov I., Bussiba A.
Micromechanical Modeling of CFCs Using Different Pore Approximations
In Ed: Krenkel W., Lamon J.: High Temperature Ceramic Materials and Composites, AVISO Verlagsgesellschaft mbH, Berlin,Germany, 590-597.
Gebert J.-M., Reznik B., Piat R., Viering B., Weidenmann K., Wanner A., Deutschmann O.
Elastic constants of high-texture pyrolytic carbon measured by ultrasound phase spectroscopy
Carbon, 48(12), 3635-3658.
Böhlke T., Jöchen K., Piat R., Langhoff T.-A., Tsukrov I., Reznik B.
Elastic Properties of Pyrolytic Carbon with Axisymmetric Textures
Technische Mechanik, 30(4), 343-353.
Ziegler T., Neubrand A., Piat R.
Multiscale Homogenization Models for the Elastic Behaviour of Metal/Ceramic Composites with lamellar domains
Composite Science and Technology, 70(4), 664-670.
Böhlke T., Langhoff T.-A., Piat R.
Bounds for the Elastic Properties of Pyrolytic Carbon
PAMM 9, 431-434.
Piat R., Roy S., Wanner A.
Material parameter identification of interpenetrating metal-ceramic composites
Key Engineering Materials, 417-418: 53-56.
2009:
Ziegler T., Neubrand A., Roy S., Wanner A., Piat R.
Elastic Constants of Metal/Ceramic Composites with Lamellar Microstructures: Finite Element Modelling and Ultrasonic Experiments
Composites Science and Technology, 69 (5): 620-626.
2008:
Bussiba A., Kupiec M., Ifergane S., Piat R., Böhlke T.
Damage evolution and fracture events sequence in various composites by acoustic emission technique
Composite Science and Technology, 68 (5): 1144-1155.
Gebert J.-M., Wanner A., Piat R., Guichard M., Rieck S., Paluszynski B., Böhlke T.
Application of the Micro-Computed Tomography for analyses of the mechanical behavior of brittle porous materials
Mechanics of Advansed Materials and Structures, 15: 467-473.
Bussiba A., Kupiec M., Piat R., Böhlke T.
Fracture characterization of c/c composite under various stress modes by mutual mechanical and acoustical responses
Carbon, 46(4):618-630.
Piat R., Tsukrov I., Böhlke T., Bronzel N., Shrinivasa T., Reznik B., Gerthsen D.
Numerical studies of the influence of textural gradients on the local stress concentrations around fibers in carbon/carbon composites
Communications in Numerical Methods in Engineering, 24(12):2194-2205.
Leguillon D., Piat R.
Fracture of porous materials – Influence of the pore size, Toughness of porous materials
Engineering Fracture Mechanics, 75: 1840-1853.
2007:
Piat R., Lapusta Y., Böhlke T., Guellali M., Reznik B., Gerthsen D., Chen T., Oberacker R., Hoffmann M.J.
Microstructure induced thermal stresses in pyrolytic carbon matrices at temperatures up to 29000C
Journal of the European Ceramic Society, 27(16) : 4813-4820.
Piat R., Roser M., Fritzen F., Schnack E.
Numerische Modellierung des Rissfortschritts in porösen CVI-CFC Verbundwerkstoffen
MP Materialprüfung, 49, 170-176.
2006:
Piat R.
Numerical modeling of brittle fracture in porous CFC materials
PAMM 6: 191-192.
Piat R., Tsukrov I., Mladenov. N., Verijenko V., Guellali M., Schnack E., Hoffmann M. J.
Material modeling of the CVI-infiltrated C-felt. I. Basic formulae, theory and numerical experiments
Composites Science and Technology 66(15):2997-3003.
Piat R., Tsukrov I., Mladenov. N., Guellali M., Ermel R., Beck T., Schnack E., Hoffmann M. J.
Material modeling of the CVI-infiltrated C-felt. II. Statistical study of the microstructure, numerical analysis and experimental validation
Composite Science and Technology 66(15): 2769-2775.